

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

RAISING THE DEGREE OF SERVICE-ORIENTATION OF
A SOA-BASED SOFTWARE SYSTEM: A CASE STUDY

by

Feng Shi Liu

December 2009

Thesis Co-Advisors: Man-Tak Shing
 Bret Michael

Approved for public release; distribution is unlimited

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for
reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and
reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2009

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Raising the Degree of Service-Orientation of a SOA-
based Software System: A Case Study

6. AUTHOR(S) Feng Shi Liu

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The term “service-oriented architecture (SOA)” has been gaining popularity in the Department of

Defense’s (DoD) software engineering and IT community in recent years. It has become the next “big thing” and
is the buzz word used at technical conferences and high level management meetings. But the term “service-
orientation” has caused much confusion among program sponsors, government IT managers, and software
professionals. Its apparent ambiguity has let them to claim their own interpretations of SOA. Many have been led
to the notion that a technical architecture deemed service-oriented is simply one comprised of Web services. This
is a common but dangerous assumption that leads to the number one mistake made by projects intending to adopt
SOA—the perception that the benefits promised by current mainstream SOA are attainable solely through an
implementation using the Web services platform.

This paper will present a case study to illustrate that building an SOA-based application is not just about
applying a particular set of technologies and standards but by following a set of sound design principles based on
service-orientation. The biggest contribution of this paper is to show, by conducting a case study, that the use of
Web services alone does not make a system service-oriented. The results of this paper can be used by IT
professionals in the DoD to better evaluate the degree of service-orientation for a software system’s architecture.

15. NUMBER OF
PAGES

95

14. SUBJECT TERMS

SOA, Web services, open architecture, Command and Control, Sensor Management

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

RAISING THE DEGREE OF SERVICE-ORIENTATION OF A SOA-BASED
SOFTWARE SYSTEM: A CASE STUDY

Feng S. Liu

Civilian, United States Navy
B.S., University of Kansas, 2002

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN SOFTWARE ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 2009

Author: Feng S. Liu

Approved by: Man-Tak Shing

Thesis Advisor

 Bret Michael
Co-Advisor

 Peter J. Jenning
 Chairman, Department of Software Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The term “service-oriented architecture (SOA)” has been gaining popularity in the

Department of Defense’s (DoD) software engineering and IT community in recent years.

It has become the next “big thing” and is the buzz word used at technical conferences and

high level management meetings. But the term “service-orientation” has caused much

confusion among program sponsors, government IT managers, and software

professionals. Its apparent ambiguity has let them to claim their own interpretations of

SOA. Many have been led to the notion that a technical architecture deemed service-

oriented is simply one comprised of Web services. This is a common but dangerous

assumption that leads to the number one mistake made by projects intending to adopt

SOA—the perception that the benefits promised by current mainstream SOA are

attainable solely through an implementation using the Web services platform.

This paper will present a case study to illustrate that building an SOA-based

application is not just about applying a particular set of technologies and standards but by

following a set of sound design principles based on service-orientation. The biggest

contribution of this paper is to show, by conducting a case study, that the use of Web

services alone does not make a system service-oriented. The results of this paper can be

used by IT professionals in the DoD to better evaluate the degree of service-orientation

for a software system’s architecture.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 i

TABLE OF CONTENTS

I. ..1 INTRODUCTION
A. ..1 MOTIVATION
B. ...2 PURPOSE
C. ...2 ORGANIZATION

II. ..5 BACKGROUND
A. ...5 SERVICE-ORIENTED ARCHITECTURE

1.6 Fundamental Service-oriented Design Principles
2. ...9 Pitfalls of SOA Design

B.9 WEB SERVICES TECHNOLOGY AND STANDARDS
1. ..10 Web Services Standards
2. ..11 Web Service Stack
3.16 Relationship between SOA and Web Services

C. ...17 CASE STUDY: SMS/JPSC2
1. ..18 System Overview
2. ..19 JPSC2
3. ...20 Sensor Management System
4. ...22 System Architecture

III. ..25 CURRENT DESGIN OF SMS
A. ..25 INTERFACE TO SENSOR SYSTEMS
B. ..31 INTERFACE TO EXTERNAL C2

1. ..32 Sensor Data Interface
2. ...34 Sensor Control Interface

IV. ..37 SOA ANALYSIS OF SMS
1.38 SMS Architecture Shares a Formal Contract
2.39 SMS Architecture is Designed to Abstract Underlying Logic
3.40 SMS Architecture is Deficient in Building Modular Services
4.

..40
SMS Architecture is Deficient in Building Autonomous
Services

5.43 SMS Design has Services that are Stateful
6.

..44
SMS Architecture is Deficient in Building Loosely Coupled
Services

7.45 SMS Architecture is Deficient in Building Reusable Services
8.

..46
SMS Architecture is Deficient in Building Composable
Services

9.46 SMS Design does not Support Service Discovery

V. ...47 ALTERNATIVE DESIGN BASED ON SOA
1.

...48
Implementing SMS Web Services as Autonomous and
Independent Services

2.48 Building Sensor Libraries as Autonomous Services
3.51 Implementing Client Authentication as a Separate Service

 ii

4.52 Removing Registration from Web Service Interface
5.53 Adding DBMS to Minimize State Information
6.54 Implementing UDDI to Make Web Service Discoverable

VI. ...55 CONCLUSION AND FUTURE WORK
A. ..55 CONCLUSION
B. ...55 FUTURE WORK

1. ...55 Web Service Performance
2. ...56 Web Service Security

APPENDIX: SERVICE DESCRIPTIONS (WSDL) ..59
A. ..59 SENSORDATAWS
B. ...65 SENSORCONTROLWS
C. ...72 SENSORDATAPUBLISHERWS

LIST OF REFERENCES..76

INITIAL DISTRIBUTION LIST ...79

 iii

LIST OF FIGURES

Figure 1: Web Services Architecture Stack Diagram..12
Figure 2: Basic SMS/JPSC2 Schematic ..18
Figure 3: JPSC2 User Interface: Regional Surveillance..19
Figure 4: Sensor Management System Overview ..21
Figure 5 shows the high level architectural components of SMS/JPSC2................................22
Figure 5: Current System Architecture of SMS/JPSC2 ..22
Figure 6: SMS Architectural Component Diagram...25
Figure 7: Sensor Interface ...28
Figure 8: OTH-GOLD Message from GCCS-M...29
Figure 9: Vistascape Sensor Data Management System Message29
Figure 10: SMS Sensor Message Format ..30
Figure 11: SMS Admin Tool User Interface ...41
Figure 12: Proposed SMS Architecture...47

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

LIST OF TABLES

Table 1: SMS and External Sensor Systems Data Exchange Matrix.............................27

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

ACKNOWLEDGMENTS

This thesis is dedicated to my wife, Molly, and our beautiful princess, Joanne,

who supported me while I was working late trying to finish this project.

I would also like to thank my advisor, Professor Shing, for the time and effort he

has provided throughout this project. He has been a great teacher to me. I am a better

software engineer today because of his guidance and outstanding mentorship.

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. MOTIVATION

 The Department of Defense (DoD) has singled out Service-Oriented Architecture

(SOA) implementation as the best way to “fulfill the requirements of a net-centric

environment” [1]. But the term SOA has been widely misunderstood within DoD’s

software community. The major confusion comes from the fact that many software

professionals cannot distinguish the difference between SOA, a software design concept,

and Web services, a set of technologies and standards. They often use the two terms

interchangeably.

This apparent ambiguity has let program sponsors, government managers, and

software engineers to claim their own interpretations of SOA. Many have been led to the

notion that a technical architecture deemed service-oriented is simply one comprised of

Web services. This is a common but dangerous assumption that leads to the number one

mistake made by projects intending to adopt SOA—the perception that the benefits

promised by current mainstream SOA are attainable solely through an implementation

using the Web services platform [2].

Throughout my software engineering career at the Space and Naval Warfare

Systems Center Pacific in the last six years, I have encountered numerous applications

that apply Web services based on a non-SOA approach. This is due to an improper

understanding of the basic fundamental design principles of SOA. Web services and

SOA, even though closely related, are fundamentally different. It’s possible to build an

application with Web services without being service-oriented, and it’s also possible to

build a SOA-based application without using Web services at all.

One can’t get the benefits that SOA offers unless one truly understands its basic

underlying principles, and one can’t leverage the benefits that Web services provide

unless Web services are applied based on SOA. Without knowing the proper relationship

between the two, SOA and Web services will fail to fulfill their promises and realize their

full potential.

 2

B. PURPOSE

This thesis attempts to answer the following questions:

1) Does a system’s use of Web services make its architecture service-oriented?

2) What determines whether a system is designed based on SOA?

3) What criteria can be used to evaluate a system’s degree of service-orientation?

The most efficient way to answer the above questions is to conduct a detailed case

study. Albert Einstein once said that “example isn’t another way to teach, it is the only

way to teach.” The use of a case study offers a different approach than many books and

papers on the subject which put a heavy emphasis on theory and concepts instead of

using detailed examples.

Thus, in this thesis, a detailed case study on the Sensor Management System/Joint

Perimeter Surveillance Command Control Integrated System (SMS/JPSC2) will be

conducted to address the above questions.

The thesis will present, through the study of SMS/JPSC2, that building an SOA-

based application is not just about applying a particular set of technologies and standards

but by following a set of sound design principles based on service-orientation. It

describes an alternative architectural design and a set of new services for SMS to improve

its degree of service-orientation. The biggest contribution of this thesis is to show that

the use of Web services alone does not make a system service-oriented. SOA and Web

services, though related, are fundamentally different. The results of this thesis can help IT

professionals to gain a better understanding of SOA and Web services, their relationships,

and how to evaluate a software system’s architecture based on service-oriented design

principles.

C. ORGANIZATION

This thesis is organized as follows:

 Chapter I is the introduction section of the thesis. It presents the motivation,

purpose, and organization of this thesis.

 Chapter II provides background information on Service-Oriented Architecture

(SOA), Web services technology and standards, and the case study on Sensor

 3

Management System/Joint Perimeter Surveillance Command Control

Integrated System (SMS/JPSC2).

 Chapter III describes the current architectural design of the Sensor

Management System (SMS).

 Chapter IV presents the analysis and evaluation of SMS’s architecture based

on SOA design principles.

 Chapter V presents an alternative architectural design and a set of new

services for SMS to improve its degree of service-orientation.

 Chapter VI summarizes the thesis, and makes suggestions for future work.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. BACKGROUND

A. SERVICE-ORIENTED ARCHITECTURE

This chapter provides background information about SOA for readers new to the

subject so that they can put the material presented in the remaining chapters into the

proper context.

Before we define what a Service-oriented Architecture is, let’s first define what a

service is under the context of SOA:

A service is an implementation of a well-defined piece of business
functionality, with a published interface that is discoverable and can be
used by service consumers when building different applications and
business processes [3].

With the term ‘service’ defined, let’s attempt to define SOA:

Service-Oriented Architecture is a software design methodology that uses
loosely-coupled services to perform business functions or processes.
These services communicate using well-defined standards [3].

The Net-Centric Enterprise Solutions for Interoperability (NESI) overview document

explains SOA as follows:

SOA promotes flexibility and reuse. This enables developers to compose
complex software systems from clearly defined, implementation-neutral
interfaces rather than through brittle implementation mechanisms such as
tightly coupled, highly integrated applications… SOA isolates the
specifics of data implementation from the service interface… Services are
designed to be highly interoperable, loosely coupled, decentralized, and
discoverable across the enterprise [5].

In the world of SOA, applications govern their individual services; each service

evolves and grows relatively independent from each other. However, in order for those

independent and autonomous services to work seamlessly together, they need to adhere to

certain baseline conventions. These conventions standardize key aspects of each business

for the benefit of the service consumers without adversely affecting individual

application’s ability to exercise self-governess [2].

 6

Processing in SOA is highly distributed. Each service has an explicit functional

boundary and related resource requirements. In modeling a technical service-oriented

architecture, we have many choices as to how we can position and deploy services.

Enterprise solutions consist of multiple servers, each hosting sets of Web services and

supporting middleware. Services can be distributed as required, and performance

demands are one of several factors in determining the physical deployment configuration

[2].

Here’s a good analogy: a SOA-based service is like a tangram puzzle. Tangram

pieces are “loosely coupled” and provide the flexibility to create a wide variety of

products using the same pieces. This is very illustrative of composing SOA services to

serve multiple business processes. Traditional applications based on component

architecture were built to satisfy one business process. The tangram puzzle or service

"modules" are constructed with loosely-coupled interfaces to allow for business process

flexibility and use in multiple business processes. When properly designed, loosely

coupled services support a composition model, allowing individual services to participate

in aggregate assemblies. This introduces continual opportunities for reuse and

extensibility.

1. Fundamental Service-oriented Design Principles

SOA can also be viewed as a form of technology architecture that adheres to the

principles of service-orientation.

That definition begs the question: what are the principles of service-orientation?

Thomas Erl, a world renowned expert on SOA, defined service oriented design principles

as follows:

Services are reusable. Logic is divided into services with the intention of

promoting reuse. Regardless of whether immediate reuse opportunities exist, services are

designed to support potential reuse. By applying design standards that make each service

potentially reusable, the chances of being able to accommodate future requirements with

less development effort are increased [2].

 7

Services share a formal contract. Service contracts provide a formal definition

of:

 service endpoint

 each service operation

 every input and output message supported by each operation

 rules and characteristics of the service and its operations.

Service contracts therefore define almost all of the primary parts of an SOA. Good

service contracts also may provide semantic information that explains how a service may

go about accomplishing a particular task. Either way, this information establishes the

agreement made by a service provider and service requestors [2].

Services are loosely coupled. Services maintain a relationship that minimizes

dependencies and only requires that they retain an awareness of each other. They must be

designed to interact on a loosely coupled basis, and they must maintain this state of loose

coupling. This is closely related to service abstraction and service autonomy. [Loosely

coupled frameworks allow individual nodes in a distributed system to change without

affecting or requiring change in any other part of the system.]

Being able to ultimately respond to unforeseen changes in an efficient manner is a

key goal of applying service-orientation. Realizing this form of agility is directly

supported by establishing a loosely coupled relationship between services [2]. Very

loosely coupled systems have the added advantage that they tend to have shorter

development time. This is due to the low amounts of inter-module dependency.

Services abstract underlying logic. Beyond what is described in the service

contract, services hide logic from the outside world. The only part of a service that is

visible to the outside world is what is exposed via the service’s description and formal

contract. The underlying logic is invisible and irrelevant to service requestors.

Services are composable. Collections of services can be coordinated and

assembled to form composite services. This possibility allows logic to be represented at

different levels of granularity and promotes reusability and the creation of abstraction

layers.

 8

Services are autonomous. Services have control over the logic they encapsulate.

The logic governed by a service resides within an explicit boundary. The service has

complete autonomy within this boundary and is not dependent on other services for the

execution of this governance. It also eliminates dependencies on other services, which

frees a service from ties that could inhibit its deployment and evolution [2].

Services are stateless. Services minimize retaining information specific to an

activity. They should not be required to manage state information, since that can impede

their ability to remain loosely coupled. Stateless is a preferred condition for services and

one that promotes reusability and scalability.

Services are discoverable. Discovery helps avoid the accidental creation of

redundant services or services that implement redundant logic. Because each operation

provides a potentially reusable piece of processing logic, metadata attached to a service

needs to sufficiently describe not only the service’s overall purpose, but also the

functionality offered by its operations [2].

Thus services should be designed to be outwardly descriptive so that they can be

found and assessed via availability discovery mechanisms. They should allow their

descriptions to be discovered and understood by humans and service users who may be

able to make use of the services’ logic. Service discovery can be facilitated by the use of

a directory provider such as the UDDI registry [6].

In addition, we added one more SOA design principle to the list:

Services are modular. Modularity represents a distinct approach for separating

concerns. What this means is that logic required to solve a large problem can be better

constructed, carried out, and managed if it is decomposed into a collection of smaller,

related pieces [2]. Each of these pieces addresses a concern or a specific part of the

problem. The concept of modularity is nothing new. It’s an old design concept promoted

in many traditional architectural approach. What distinguishes SOA from them is that

SOA services are autonomous and loosely-coupled. A good analogy is to think of

component-based architecture as jigsaw puzzles (tightly coupled) and SOA-based

architecture as tangram puzzles (loosely coupled).

 9

2. Pitfalls of SOA Design

Fundamental service-orientation principles are designed to be technology

agnostic. Building applications with service-oriented architecture requires a sound

understanding of basic software design principles specified above.

The list below identifies some of the common pitfalls of designing SOA-based

applications:

 Improper partitioning of functional boundaries within services

 Creation of non-composable (or semi-composable) services

 Creation of tightly coupled services

 Creation of stateful Web services

In Chapter IV, we will apply the above principles to evaluate SMS/JPSC2’s

system architecture to determine its degree of service-orientation and to propose

alternative design solutions to make it more service-oriented.

B. WEB SERVICES TECHNOLOGY AND STANDARDS

A Web service is defined by the World Wide Web Consortium (W3C) as the

following:

A Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface
described in a machine-processable format (specifically WSDL). Other
systems interact with the Web service in a manner prescribed by its
description using SOAP-messages, typically conveyed using HTTP with
an XML serialization in conjunction with other Web-related standards. [2]

To put it simply, Web services encompass a set of related standards that can

enable any two computer applications to communicate and exchange data via the

common Internet protocols.

One key benefit that Web services offer that traditional distributed architectures

do not is that Web services are based on open standards.

We shall look at Web services standards in the next section.

 10

1. Web Services Standards

The core set of Web services standards includes the followings:

 Extensible Markup Language (XML) [7]

 Web Service Description Language (WSDL) [8]

 Simple Object Access Protocol (SOAP) [9]

 Universal Description Discovery and Integration (UDDI)

a. Extensible Markup Language (XML)

XML is the main standard used in Web services. It is a language for

marking up data so that information can be exchanged between applications and

platforms.

b. Simple Object Access Protocol (SOAP)

SOAP is a messaging protocol for transporting information and

instructions between Web services, using XML as a foundation for the protocol. It also

defines a way to perform remote procedure calls (RPCs) using Hypertext Transfer

Protocol (HTTP) as the underlying communication protocol.

c. Web Service Description Language (WSDL)

Web services Description Language provides a standard method of

describing Web services and their specific capabilities. WSDL is a XML-based language

used to describe what a Web service can do, where it resides, and how to invoke it. The

WSDL serves as contract between the Web service and a consumer or potential consumer

of that service. The WSDL file describes both the data to be passed and the method for

passing the data.

d. Universal Description Discovery and Integration (UDDI)

Universal Description, Discovery and Integration defines XML-based rule

for building directories in which applications advertise themselves and their Web

 11

services. It also provides an interface and a mechanism for clients to dynamically find

Web services offered by external applications. A UDDI registry has two kinds of clients:

applications that want to publish a service (and its usage interfaces), and clients who want

to obtain services of a certain kind and bind programmatically to them.

UDDI can also be viewed as a registry of descriptions of Web services

available for use much like telephone yellow pages provides information about available

commercial services. The registry itself is a hierarchical structure of business, service,

and binding information represented in XML. The purpose of UDDI is to make service

discovery possible at design time and dynamically at runtime.

2. Web Service Stack

The Web services stack shows the collection of computer networking protocols

that define, locate, implement, and make Web services interact with each other. The

World Wide Web Consortium’s Web Services Architecture Working Group defined

technical standards to ensure interoperability for SOAs.

The Working Group divided these standards into the following six areas:

processes, descriptions, messages, communications, security and management: Figure 1

shows a modified version of their Web Services Architecture Stack diagram.

Figure 1: Web Services Architecture Stack Diagram

a. Process Layer

The Process layer describes how providers publish services and

requestors/consumers discover them. The Process layer utilizes the following standards:

 Universal Description Discovery and Integration (UDDI): Again as mentioned

earlier, UDDI is a directory that allows applications to register their Web services

so that the potential service consumers can find them.

 WS-Coordination: This specification “describes an extensible framework for

providing protocols that coordinate the actions of distributed applications. Such

coordination protocols are used to support a number of applications, including

those that need to reach consistent agreement on the outcome of distributed

activities” [10].

 12

 13

b. Description Layer

The Description layer describes how the service provider communicates

the specifications for invoking the Web service to the service requestor. The Description

layer utilizes the following standards:

 Web Service Description Language (WSDL): An XML document that

describes the interfaces and methods that a service provides.

c. Messages Layer

The Messages layer describes how the services pass information in the

form of a message. The Messages layer utilizes the following standards:

 Simple Object Access Protocol (SOAP): SOAP is a protocol used to

exchange messages between systems in XML format. SOAP has

become the de-facto standard protocol for Web services [9].

 WS-ReliableMessaging: This specification describes a protocol that

allows messages to be transferred reliably between nodes in the

presence of software component, system, or network failures [31].

 WS-Addressing: This specification “provides transport-neutral

mechanisms to address Web services and messages. Specifically, this

specification defines XML elements to identify Web service endpoints

and to secure end-to-end endpoint identification in messages. This

specification enables messaging systems to support message

transmission through networks that include processing nodes such as

endpoint managers, firewalls, and gateways in a transport-neutral

manner” [11].

 WS-Notification: “The Event-driven, or Notification-based, interaction

pattern is a commonly used pattern for inter-object communications.

Examples exist in many domains, for example in publish/subscribe

systems provided by Message Oriented Middleware vendors, or in

system and device management domains” [12].

 14

 WS-Eventing: “This specification describes a protocol that allows Web

services to subscribe to or accept subscriptions for event notification

messages” [13].

d. Communications Layer

The Communications layer describes how messages are physically

transported across the network. The Communications layer utilizes the following Internet

protocols:

 Hypertext Transfer Protocol (HTTP): HTTP is the standard

mechanism for retrieving Web pages and associated content. It can

also be used for transmitting data from the client to the server [14].

 Simple Mail Transfer Protocol (SMTP): SMTP is the standard

mechanism for sending email from the client to the server [15].

 File Transfer Protocol (FTP): FTP is primarily used for transferring

files from one computer to another over a TCP/IP network [16].

e. Security

Security occurs at all layers in the stack and it provides authenticity,

integrity, confidentiality, and non-repudiation. Security utilizes the following standards:

 WS-Security: “This specification describes enhancements to SOAP

messaging to provide message integrity and confidentiality. The

specified mechanisms can be used to accommodate a wide variety of

security models and encryption technologies” [17].

 WS-SecurityPolicy: WS-SecurityPolicy is designed to work with the

general Web Services framework including WSDL service

descriptions, UDDI businessServices and bindingTemplates, and

SOAP message structure and message processing model. WS-

SecurityPolicy should be applicable to any version of SOAP [18].

 15

 WS-SecureConversation: “This specification defines extensions that

build on WS-Security to provide a framework for requesting and

issuing security tokens, and to broker trust relationships” [19].

 WS-Trust: The goal of WS-Trust is to enable applications to construct

trusted SOAP message exchanges. This trust is represented through the

exchange and brokering of security tokens. This specification provides

a protocol agnostic way to issue, renew, and validate these security

tokens [20].

 WS-Federation: A specification, by IBM and Microsoft, for

standardizing the way companies share user and machine identities

among disparate authentication and authorization systems spread

across corporate boundaries [21].

 SAML: “An XML-based framework for communicating user

authentication, entitlement, and attribute information. As its name

suggests, SAML allows business entities to make assertions regarding

the identity, attributes, and entitlements of a subject (an entity that is

often a human user) to other entities, such as a partner company or

another enterprise application” [22].

f. Management

Management, like Security, occurs across all layers in the stack.

Management provides methods for monitoring and managing services and business

processes. Management utilizes the following standards:

 WS-Manageability: “specification introduces the general concepts of a

manageability model in terms of manageability topics and the aspects

used to define them” [23].

 Business Process Execution Language for Web Services (BPEL4WS):

“The Business Process Execution Language for Web Services provides

a comprehensive syntax for describing business workflow logic. It

allows for the creation of abstract processes that can describe business

 16

protocols, as well as executable processes that can be compiled into

runtime scripts” [2] The Business Process Modeling Notation (BPMN)

provides a standardized graphical notation for drawing business

processes in a workflow. Software tools easily translate BMPN models

into BPEL4WS files [24].

3. Relationship between SOA and Web Services

Thomas Erl, in his book Service-Oriented Architecture: Concepts, Technology,

and Design [2], coined the term Contemporary SOA, which can be defined as an

extended variation of the primitive Service-oriented Architecture we defined in the last

section. It has the following characteristics:

 Contemporary SOA increases quality of service

 Contemporary SOA is fundamentally autonomous

 Contemporary SOA is based on open standards

 Contemporary SOA supports vendor diversity

 Contemporary SOA fosters intrinsic interoperability

 Contemporary SOA promotes discovery

 Contemporary SOA promotes federation

 Contemporary SOA promotes architectural composability

 Contemporary SOA fosters inherent reusability

 Contemporary SOA emphasizes extensibility

 Contemporary SOA supports a service-oriented business modeling paradigm

 Contemporary SOA implements layers of abstraction

 Contemporary SOA promotes loose coupling throughout the enterprise

 Contemporary SOA promotes organization agility

According to Erl, the relationship between SOA and Web services can be defined

as such:

Contemporary SOA represents an architecture that promotes service-orientation

through the use of Web services.

 17

SOA is a concept, an abstract idea, and a set of design principles, whereas Web

services are a set of technologies and standards that, if utilized correctly, will facilitate

the process of building SOA-based applications. In other words, if SOA represents the

ideal of building reusable, agile, interoperable, and loosely-coupled software, then Web

services represent a means to achieve it.

Web service provides an open, standardized interface. This interface supports the

open communications framework that sits at the core of Contemporary SOA and

establishes an environment under which building loosely coupled software services are

promoted and simplified.

Thus, to realize the full potential benefits of SOA, software designers need to

standardize how Web services are positioned and designed, according to service-

orientation principles.

A technical and conceptual knowledge of Web services is certainly helpful.

However, as we established at the beginning of this chapter, fundamental service-

orientation principles are technology agnostic. Building applications based on service-

oriented architecture requires a sound understanding of basic software design principles.

The emphasis placed on business logic encapsulation and the creation of service

abstraction layers often will require a blend of technology, business analysis expertise,

and software design best practices. It is best to assume that realizing contemporary SOA

requires a set of skills that goes beyond the knowledge of Web services technology.

In this thesis, by using a case study, we will attempt to illustrate that the

application of Web services alone is not sufficient in building SOA-based software

applications.

C. CASE STUDY: SMS/JPSC2

This section provides a very high level view of our case study—the Sensor

Management System/Joint Perimeter Surveillance Command Control Integrated System

(SMS/JPSC2).

1. System Overview

SMS/JPSC2 is a multi-purpose surveillance system designed to provide perimeter

surveillance to a designated geographical area (Figure 2). The system is sponsored by the

Commander Naval Installations (CNI), and developed by the Space and Warfare Systems

Center (SPAWAR) Code 2644 in San Diego, CA. The system has already been installed

and operational at the U.S. Coast Guard’s facility at San Diego, CA; Seattle, WA

(USCG/USN); Jacksonville, FL (USN/USCG); and at the Lemoore Naval Air Base, CA.

Figure 2: Basic SMS/JPSC2 Schematic

SMS/JPSC2 has two major subsystems: the Joint Perimeter Surveillance

Command and Control (JPSC2) Integrated System and the Sensor Management System

(SMS). In this section, we will introduce the major functionalities and architectural

design of the two major subsystems.

 18

2. JPSC2

JPSC2 provides a user graphical interface for communicating and controlling

surveillance assets. Surveillance assets can be defined as sensors (radars, cameras,

transponders, video detection devices, etc.) that have the capabilities to detect, track, and

report targets of interests. JPSC2 communicates with surveillance sensors via the Sensor

Management System (which will be covered in detail in later sections) and present the

collected sensor data on a geographical map. When JPSC2 presents detected objects on

the viewing screen (called “tracks”), it enables operators to select the tracks to view their

detailed information such as name, location, heading, speed, etc. JPSC2 also integrates

live surveillance camera video feeds and display them to the Watch Security Officer

through its graphical user interface. (See Figure 3 for a snapshot of JPSC2.) Surveillance

cameras can be controlled by the Watch Security Officer through the JPSC2 interface.

Camera control functions include slewing cameras to specific targets and setting cameras

to follow a selected target.

Figure 3: JPSC2 User Interface: Regional Surveillance

 19

 20

Below is a partial list of the basic command and control functionalities that JSPC2

provides:

 Real-time Detection of Objects—Within established alarm zones, JSPC2

automatically monitors the defined perimeters based on a set of pre-defined

rules and alerts operators of any violations. Upon detection of a violation, the

system automatically slews the nearest camera to the violating target and tracks

the intruder continuously, providing the Security Watch Offer the exact location

to which a reaction force can be directed.

 Display near real-time tracks collected by remote sensors on geographical maps

of surveillance areas

 Monitor, identify, and track targets by directing and controlling remote sensors

 Operate on and make technical adjustments to local and remote sensor

equipments such as cameras, ground and marine radars

 View/Query identification data transmitted from land and marine vessels

 View live tracks; store and retrieve historical track data

 View live video feeds from one or more remote cameras

 Record, store, and review snapshots and brief video clips

 Establish stationary and moving alarm zones based on a set of pre-defined

business rules

 Compile, review, sort, and prioritize alarms and incidents

 Enable/disable audible detection alarms and enable/disable a predefined

schedule of detection alarms

3. Sensor Management System

 SMS aggregates data collected from multiple surveillance sensors and make those

data accessible for client systems such as JPSC2 via the Sensor Data Web service

interface of its Web Server Process (Figure 5). SMS also allows client C2 systems to

direct and control surveillance sensors via the Sensor Control Web service interface of its

Web Server Process. The basic design goal for SMS is to decouple the management of

sensors from specific command and control systems (C2s). SMS provides all the

“plumbing” required to establish connections to the sensors, receive messages from them,

and translates each sensor’s proprietary message format into a common data format. It

basically provides a layer of abstraction between client C2 systems and the surveillance

sensors that the C2 system wants to communicate. A detailed discussion on SMS

architecture will be presented in the next chapter.

 21

Cameras RADAR

Figure 4: Sensor Management System Overview

4. System Architecture

Figure 5 shows the high level architectural components of SMS/JPSC2.

Figure 5: Current System Architecture of SMS/JPSC2

 As Figure 5 shows SMS is the backend server process that aggregates data

collected by various surveillance sensors and makes them available to client systems

through its Sensor Data Web service interface. An intermediary service in JPSC2 - the

Data Ingestion Service, retrieves the collected sensor data via SMS’s Sensor Data Web

service interface and stores them into the JPSC2 Data Center. The Data Ingestion Service

is a multi-threaded application that can receive sensor data feeds from multiple SMS

servers.

 The JPSC2 Data Center provides data storage to both live and historical tracks.

Virtually every activity detected by the surveillance sensors managed by SMS can be

stored to and retrieved from the Data Center.

 Once sensor data are stored in the JPSC2 Data Center, they are available for

JPSC2 clients to retrieve for display on a Command and Control map console. A JPSC2

client is basically a thick client running on some user workstation. It is the presentation

 22

 23

layer of the system. Most of the graphical user interface related programming logic is

implemented within JPSC2 client tier.

JPSC2 can also communicate with surveillance sensors through SMS’s Sensor

Control Web service interface. This takes place when the operator tries to control a

surveillance sensor such as configuring radar settings or moving cameras. Upon receiving

a control command from JPSC2, SMS translates the command to a sensor specific

message format and forward the command to the appropriate sensor using the sensor’s

communication protocol.

 24

THIS PAGE INTENTIONALLY LEFT BLANK

III. CURRENT DESGIN OF SMS

A. INTERFACE TO SENSOR SYSTEMS

In this section, we will present how SMS works at the architectural level in

general and how it communicates with external systems in particular.

SMS provides the communication backend to integrate and control sensors.

Sensors in the context of SMS can be defined as any device that can detect objects-of-

interests and report their status and positional information to a client system in near real-

time. Some of the sensors that SMS manages also have remote interfaces that accept

control commands from client systems. Examples of SMS sensors include ground radars,

marine radars, Automatic Identification System (AIS) transponders, video detection

digital signal processors, and surveillance cameras. Figure 6 shows the major

architectural components of SMS.

Figure 6: SMS Architectural Component Diagram

 25

 26

Now, let’s take a look at how surveillance sensors are managed by SMS.

SMS is essentially a Windows service implemented in Microsoft’s .NET

framework. In SMS, there is a software library for every sensor that SMS manages. For

example, there is a software library for communicating with AIS, a library to

communicate with Perimeter Surveillance Radar system (PSRS), and a library to control

surveillance cameras, etc. Since each sensor managed by SMS has its own

communication protocol and messaging format, the corresponding sensor library has to

be developed based on that sensor’s specific communications interface requirements.

Table 1 shows a data exchange matrix between SMS and some of its managed sensors.

 27

Table 1: SMS and External Sensor Systems Data Exchange Matrix

Data Flow External Sensor

System

Communication

Protocol

Message

Format Source Destination

AIS TCP/IP NMEA-0813 AIS SMS

Surveillance Cameras Serial ASCII SMS
Surveillance

Cameras

PSRS ground radar Serial XML PSRS SMS

SRS ground radar TCP/IP XML SRS SMS

CamSmartz video

detection digital

signal processor

(DSP)

TCP/IP XML CamSmartz SMS

Vistascape Sensor

Data Management

System (SDMS)

HTTP HTTP GET SDMS SMS

Mutiple-Input

Tracking and Control

System (MTRACS)

TCP/IP OTH-GOLD MTRACS SMS

Multiple-Input

Tracking and Control

System (MTRACS)

TCP/IP OTH-GOLD SMS MTRACS

 SMS sensor libraries can be viewed as independent software components whose

run-time behaviors are governed by SMS. When SMS is started, each active sensor

library is loaded into SMS’s process space as independent threads. They act as listeners

listening either to incoming track reports from sensors or to sensor control commands

triggered from command and control (C2) systems such as JPSC2. All sensor libraries

implement the same interface. Figure 7 shows the interface that all SMS sensor libraries

implement and provides descriptions for each interface method.

Figure 7: Sensor Interface

The SetSensorInfo method sets some sensor properties. Those properties usually

come from the person who configures the sensor. The GetSensorMsg method converts

the sensor’s unique proprietary message format into SMS’s generic sensor format. And

finally the MessageTerminationString method defines the sensor message’s termination

string. Each sensor library is implemented as a .NET dynamic link library (dll). SMS has

infrastructure services to load and run the sensor libraries using .NET Reflection by

calling the three methods defined in the sensor interface. The details of how the SMS

infrastructure services interact with SMS sensor libraries are beyond the scope of this

thesis; we will not examine it further.

When SMS receives track reports from a given sensor, the corresponding sensor

library in SMS converts those track reports from the sensor’s own unique proprietary

message format to a generic message format defined by SMS. We can view each sensor

library as a translator that translates sensor specific “languages” into a “language” that

SMS understands. Thus SMS provides the capability to merge sensor data gathered from

 28

multiple disparate data sources into a common messaging and communication protocol.

Figures 8 and 9 show some sample proprietary messages from sensor systems, and Figure

10 shows a sample message in SMS format.

Figure 8: OTH-GOLD Message from GCCS-M

Figure 9: Vistascape Sensor Data Management System Message

 29

Figure 10: SMS Sensor Message Format

After message translation is complete, SMS will push each translated track

message into a message queue called the AggregateSensorTrackQueue. This message

queue will contain all tracks originated from the surveillance sensors integrated to SMS.

When a client system such as JPSC2 requests sensor track messages from SMS, it calls

the SensorDataWS Web service in SMS. Upon receiving the track request message from

the client system, SensorDataWS forwards the request to a .NET component called

SensorRemoteObj. SensorRemoteObj in turn will retrieve sensor tracks from the

AggregateSensorTrackQueue and return the retrieved tracks to SensorDataWS.

SensorDataWS then will return the received tracks to the requesting client system.

 30

 31

Now, we have examined how data flows from sensors to SMS; let’s examine how

data flows from an external C2 system such as JPSC2 to sensor systems via SMS.

Let’s consider this scenario: a watch officer brings up a camera window for

Camera A from the JPSC2 interface and clicks on the “pan left” button in the camera

window. After the button has been pressed, a “pan left” command is sent to SMS through

its SensorControlWS Web service interface. Upon receiving the “pan left” command from

JPSC2, SensorControlWS forwards the command to SensorRemoteObj.

SensorRemoteObj in turn forwards the command to the corresponding software library

that communicates with Camera A. Upon receiving the “pan left” command, the software

library translates this generic “pan left” command into the proprietary message format

that Camera A understands and then forwards the command to Camera A through a serial

interface (which is the communication interface that Camera A uses to communicate with

remote systems). Camera A then pans to the left.

In the above scenario, we can see that a SMS sensor library not only translate

sensor track data to SMS message format, but also translate SMS messages into sensor

specific messaging protocols. In other words, SMS sensor libraries can handle two-way

translations between SMS and the surveillance sensor systems.

B. INTERFACE TO EXTERNAL C2

In this section, we will present SMS’s communications interface to external C2

systems. As Figure 6 shows, all SMS communication with external C2 systems is carried

out via Web services. We shall explore two sets of SMS Web service interfaces: 1)

SensorDataWS Web service interface and 2) SensorControlWS Web service interface.

Before diving into the implementation details of the two Web services, we want to

make some comments regarding their design approach. When being called, both of the

two Web services delegate their actual service logic implementations to a .NET

component named SensorRemoteObj through .NET Remoting. For example, when the

RegisterData Web service method in SensorDataWS is called by a client system,

SensorDataWS calls the RegisterData method in SensorRemoteObj to carry out the actual

registration of the client system. SensorDataWS itself does not implement any service

logic to register the client, all registration programming logic are implemented by

 32

SensorRemoteObj. In this context, Web services are implemented as component

wrappers. Its primary role is to introduce an integration layer that consists of wrapper

services that enable synchronous communication via SOAP-compliant integration

channels.

1. Sensor Data Interface

The SensorDataWS Web service interface consists of a set of Web service calls to

acquire tracks detected by surveillance sensors integrated to SMS. The interface contains

the following Web service method calls: (A detailed interface description (WSDL) of the

SensorDataWS Web service is listed in the Appendix)

String RegisterData(String clientName,

 String format,

 String filterType,

 String filterString)

The RegisterData Web service method registers a client system with SMS. Any

client system that wants to receive track messages from SMS needs to register with SMS

first. If registration is successful, the method will return the string “SUCCESSFUL”, if

not, the method will return error messages indicating why failure occurred.

The clientName parameter specifies the name of the client. The format parameter

specifies the type of messages that the client system is interested in. There are three types

of messages in SMS: track, sensor status, and incident. Track messages are target position

data reported by the sensors; status messages indicate the status of the sensor (“on” or

“off”); incident messages are special messages that represent critical events such as

intrusion of a protected zone that the sensor detected. They usually come into the JPSC2

system as alerts. The filterType and filterString parameters allow the client system to

filter track messages based on sensor specific properties such as device type (AIS, PSRS

ground radar, video detection device, etc.), sensor location, etc.

String UnregisterData(String clientName)

The UnregisterData Web service method unregisters a client system with SMS.

Once the client system unregisters with SMS, it no longer receives data from SMS. If

 33

unregistration is successful, the method will return the string “SUCCESSFUL,” if not, the

method will return error messages indicating why failure occurred.

The clientName parameter is the name that the client used to register with SMS.

String GetMessage(String clientName)

The GetMessage Web service method receives messages from SMS once it has

successfully registered with SMS.

The string clientName is the name that the client system used to register with

SMS.

String GetClientList()

This method returns a list of SMS’s clients.

String GetSensorList()

This method returns a list of sensors that SMS is currently managing.

With the SensorDataWS Web service interface defined and explained, let’s now

examine in detail how external systems interact with SMS to receive tracks via the

SensorDataWS Web service interface.

Before client systems can receive tracks from SMS, they need to call the

RegisterData Web service method to register with SMS. When the RegisterData Web

service method is called, it delegates the registration process to the SensorRemoteObj

component in SMS. If registration is successful, the client system will call the

GetMessage Web service method. This method will in turn call SensorRemoteObj to

verify whether the client system is indeed registered. If verification has succeeded,

SensorRemoteObj then creates a message queue for that client system, and populates the

queue with track messages from the AggregateSensorTrackQueue based on the client

system’s message filters defined during the registration process (filterType and

filterString parameters in the RegisterData method). As mentioned earlier, the

AggregateSensorTrackQueue contains all track messages originated from all currently

active sensors, and the RegisterData Web service method allows the client system to

define what type of messages to retrieve from SMS. There is exactly one track message

queue for every client system that tries to receive tracks from SMS. This queue is created

only when the client system has successfully passed SMS’s authentication process. This

 34

queue will be active as long as the client system’s registration is valid. When the client

system unregisters from SMS, the queue and all the messages in it will be dropped.

Another way for the queue to get de-allocated is when the client system stops calling the

GetMessage method for more than 15 minutes, then the queue will also be dropped by

SMS.

2. Sensor Control Interface

The sensor control interface consists of a set of Web service calls to send control

commands to the sensors. The interface contains the following Web service method calls:

(A detailed interface description (WSDL) of the SensorControlWS Web service is listed

in the Appendix)

String RegisterControl(String clientName,

 String sensorSite)

The RegisterControl Web service method registers a client system with SMS.

Any client system that wants to send control commands to SMS sensors needs to register

with SMS first. If registration is successful, the method will return the string

“SUCCESSFUL”, if not, the method will return error messages indicating why failure

occurred.

The clientName parameter specifies the name of the client. The sensorSite

parameter specifies the name of the sensor that the client system wants to communicate

to.

String UnregisterControl(String clientName)

The UnregisterControl Web service method unregisters a client system with

SMS. Once the client system unregisters with SMS, it no longer can send control

commands to the sensor via SMS. If unregistration is successful, the method will return

the string “SUCCESSFUL”, if not, the method will return error messages indicating why

failure occurred.

The clientName parameter is the name that the client used to register with SMS.

String SendCommand(String clientName,

String sensorSite,

String command)

 35

The SendCommand Web service method is called by the client system to forward

sensor control command to the corresponding sensor system via SMS. The command

passed from client systems are generic commands. Client systems do not know any

sensor specific information such as the sensor’s communication protocol and messaging

format. They do not need to be concerned about coding anything sensor specific. They

only needs to speak the “language” that SMS speaks. SMS will handle the translation

from generic commands to sensor specific commands based on the sensor’s

communication interface.

The clientName parameter is the name that the client system used to register with

SMS. The sensorSite parameter specifies the name of the sensor that the client system

wants to communicate with. The command parameter specifies the control command that

the client system wants to send to the sensor.

String GetSensorInfo()

The GetSensorInfo Web service method will return all current sensor status (up or

down) to the client system.

String GetSensorInfoByName(String sensorSite)

The GetSensorInfoByName Web service method will return the current sensor

status (up or down) of a given sensor to the client system. The sensorSite parameter

specifies the name of the sensor that the client system wants to get information on.

String GetSensorList()

This method returns a list of sensors that SMS is currently managing.

With the Sensor Control Web service interface defined and explained, let’s

examine how external systems interact with SMS to control sensors.

Before client systems can send a control command to sensors via SMS, they need

to call the RegisterControl Web service method to register with SMS. When the

RegisterControl method is called, it delegates the registration process to the

SensorRemoteObj component in SMS. If registration is successful, the client system will

call the SendCommand method. This method will in turn call SensorRemoteObj to verify

whether the client system is indeed registered. If verification has succeeded,

SensorRemoteObj will forward the control command to the appropriate sensor library

 36

loaded in SMS. The sensor library in turn will translate the generic command into the

sensor’s specific message format and send it to the sensor system via its remote

communication interface. The communication channel established between the client

system and the managed SMS sensor is active as long as the sensor control registration

for the client system is valid. When the client system unregisters from SMS by calling the

UnregisterControl Web service method, the communication path between the client

system and the sensor will be destroyed. Another way for the communication path to get

dropped is when the client system stops calling the SendCommand Web service method

for more than 15 minutes, then the client system has to call RegisterControl Web service

again to reestablish communication with the sensor.

 37

IV. SOA ANALYSIS OF SMS

From the previous chapter, we can see that SMS provides a set of Web service

interfaces to communicate with client systems. Does this implementation of Web services

automatically make SMS’s design service-oriented? In this chapter, we shall carry out the

analysis and try to answer that question.

As mentioned earlier in the thesis, SOA is a concept. When we evaluate a

system’s architecture to decide whether it is based on SOA, what we are really

determining is whether the system’s architectural design follows the SOA design

principles. The evaluation of a system’s service orientation is not a clear cut process.

Most systems have some design features that follow the SOA principles and some design

features that do not. Thus the best way to evaluate a system’s architecture is not to

determine whether it is based on SOA but to determine how well its architecture follows

SOA design principles. In other words, what we are really evaluating is the system’s

degree of service-orientation.

We believe that software design and software architecture evaluation are both

heuristic processes. Both depend on experience-based techniques, educated guesses, and

intuitive judgments. Software architecture evaluation based on a quantitative approach

still has to depend on subjective assessment. Thus a qualitative approach to evaluate

SMS’s degree of SOA will be adopted in this thesis.

There is no official set of service-orientation principles. There are, however, a

common set of principles most associated with service-orientation. We have defined

those principles in Chapter II Section A. They will form the basis upon which the SMS’s

degree of service-orientation will be evaluated.

Before we go into each service-orientation principle to evaluate SMS, let’s

examine some of the design characteristics of SMS’s Web service interface.

As described in earlier sections, and also as Figure 6 shows, SMS has two sets of

Web service interfaces: SensorDataWS and SensorControlWS. When being called, both

of those two Web services delegate their service implementations to a .NET component

named SensorRemoteObj through .NET Remoting. For example, when the RegisterData

 38

method in SensorDataWS is called by a client system, SensorDataWS calls the

RegisterData method in SensorRemoteObj to carry out the actual registration of the client

system. SensorDataWS itself does not implement any service logic to register the client,

all registration programming logic are implemented by SensorRemoteObj. In this context,

Web services are implemented as component wrappers. Its primary role is to introduce an

integration layer that consists of wrapper services that enable synchronous

communication via SOAP-compliant integration channels.

These integration channels are primarily utilized in integration architectures to

facilitate communication with other applications. They can also be used to enable

communication with other (more service-oriented) solutions and to take advantage of

some of the features offered by third-party utility Web services. It is important to clarify

that a distributed architecture that incorporates Web services in this manner does not

qualify as a true SOA. It is simply a distributed architecture that uses Web services [2].

Web services within SOA are subject to specific design requirements, such as

those service-orientation principles specified in Chapter II. These and other

characteristics support the pursuit of consistent loose coupling. Once achieved, a single

service is never limited to point-to-point communication; it can accommodate any

number of current and future requestors.

Now, let’s examine SMS’s degree of service-orientation based on SOA design

principles.

1. SMS Architecture Shares a Formal Contract

Communication between SMS and client systems is carried out via Web services.

SMS provides Web service interfaces for client systems to either receive sensor track

data from or send control commands to sensor systems. The WSDL files for SMS’s Web

service interfaces are the formal contracts that bind the service requesters (such as

JPSC2) and the service provider (SMS).

Also, all sensor software libraries in SMS implement the same interface. This

interface is a formal contract between the sensor libraries and SMS infrastructure

components that invoke individual sensor libraries to get sensor track feeds. In other

 39

words, you can view SMS infrastructure components as service requesters and the sensor

libraries as service providers. They are bind to one another through the sensor library

interface.

2. SMS Architecture is Designed to Abstract Underlying Logic

As described in the last section, when a JPSC2 operator brings up a camera

control window, and he clicks on the “pan left” button, a “pan left” command along with

the camera’s model are sent to SMS via its SensorControlWS Web service interface.

Upon receiving this command, SMS calls the software library specifically written for that

camera model. Since the camera only understands its vendor specific protocol, the SMS

software library for that camera model translates the generic command “pan left”

originated from JPSC2 to the camera vendor’s own protocol “pan left” command and

send it to the camera. The camera then pans to the left.

From the above example, we can see that JPSC2 does not have to know all of the

sensors’ unique communication protocols. It only needs to speak the “language” that

SMS speaks. SMS abstracts all of the programming logic to communicate with specific

sensors, so that client systems such as JPSC2 do not. This design allows the decoupling

of the user interface (JPSC2) and the communication backend. When sensors need to be

added, modified, and deleted, only individual sensor libraries will be modified, the user

interface portion of the system are left unchanged.

The same design pattern also applies to client systems that receive sensor tracks

from SMS. Each sensor system has its own communication protocol and messaging

format. SMS communicates with sensor systems using the sensors’ unique

communication interfaces, translates sensor specific message formats to a generic sensor

message format, and make sensor tracks collected from the various sensors accessible

through the SensorDataWS Web service interface. Again, client systems only need to

speak the language that SMS speaks. SMS abstracts the programming logic to handle

unique proprietary sensor specific protocols so that client systems do not. When sensors

need to be added, modified, and deleted, only individual sensor libraries will be modified.

To external systems, those operations are transparent.

 40

3. SMS Architecture is Deficient in Building Modular Services

SOA represents a distinct approach for separating concerns. What this means is

that logic required to solve a large problem can better be constructed, carried out, and

managed if it is decomposed into a collection of smaller, related pieces. Each of these

pieces addresses a concern or a specific part of the problem [2].

As argued in the earlier section, the Web service interface for SMS is nothing

more than a set of component wrappers. All SMS Web services delegate their service

implementations to the SensorRemoteObj .NET component. This single component’s

functionalities can be logically partitioned into four separate and independent operations:

 Register Client Systems

 Authenticate Client Systems

 Retrieve sensor track messages from the AggregateSensorTrackQueue

 Forwarding sensor control commands from client systems to sensor

 libraries

All of the above operations have distinct separation of concerns, thus each one of

the four major operations should be implemented as autonomous and independent

services.

4. SMS Architecture is Deficient in Building Autonomous Services

A service can be viewed as an independent software program that realizes a set of

functionalities. As each service might have an architecture that is different from the

others, it needs to be designed individually.

a. SMS Web Services are not Autonomous

 Again, Web services under current SMS architecture are nothing more

than component wrappers. They are not real services that have complete control over the

logic they encapsulate. They depend on SensorRemoteObj to implement their service

logics. SensorRemoteObj is a completely independent software entity that was not

specifically written for the SMS Web services. SMS Web services were actually

developed to expose SMS’s interface via Web services. Thus SMS Web services are not

autonomous.

b. SMS Sensor Libraries are not Autonomous

 Sensor libraries in SMS depend heavily on other SMS services to be

loaded, run, and de-allocated. Let’s examine in detail how SMS sensor libraries are

governed by SMS’s run-time infrastructure.

 SMS provides a software tool to allow SMS system administrators to load

sensor libraries into SMS runtime space. Figure 11 shows a snapshot of the user interface

for the tool.

Figure 11: SMS Admin Tool User Interface

 41

 42

 When a SMS system administrator configures SMS to communicate with

a particular sensor, the administrator enters, at a minimum, the following sensor settings

to load a given sensor library:

SensorSite: Name of the sensor

 Region: Geographical region where the sensor belongs

 MessageType: Message type that the sensor reports (track, status, or incident)

 DeviceType: Name of Sensor Library

 Connection: Type of communication protocol of the sensor

 IP Address and Port: IP address and port that SMS uses to communicate

 with the sensor track system

 DLL: the actual .dll(dynamic link library) file of the sensor library

 As explained in the last section, SMS is implemented as a Windows

service, and each sensor library is implemented as a Dynamic Link Library (dll). SMS

has some infrastructure components that provide the run-time governess infrastructure for

individual sensor libraries. When the SMS system administrator clicks on the

“Add/Update” button in the SMS Admin Tool after entering sensor settings, some SMS

infrastructure component spawns a thread that establishes the network connection with

the remote sensor system as defined in the sensor settings and then loads the sensor

library .dll file into SMS’s runtime space via .NET Reflection. After network connection

to the sensor has been established and sensor library has been loaded successfully, the

same SMS infrastructure component will call the GetSensorMsg method in the loaded

sensor library to process the sensor track messages and push the processed messages into

the AggregateSensorTrackQueue.

 We can see that it is the SMS infrastructure components that establish

network communication to the sensor, not the SMS sensor libraries. The sensor

communication protocol is part of the sensor system’s interface; it is an inherent property

and a specific attribute of the sensor. In other words, establishing communication with

the sensor should be individual sensor library’s concern, not other SMS infrastructure

 43

components’ concern. By including sensor specific attributes in the sensor library, the

sensor libraries become self-describing, more autonomous and independent from SMS

infrastructure components.

 Also, under current design, SMS sensor libraries do not push processed

sensor track messages into the AggregateSensorTrackQueue. This service is provided,

again, by SMS’s infrastructure components. If a change is made to the SMS

infrastructure components and the change cause the infrastructure components to stop

functioning, then no sensor libraries can push messages into the

AggregateSensorTrackQueue. From a service autonomy point of view, pushing messages

into the track queue should be a function that is provided by individual sensor libraries.

 Overall, the current approach makes SMS sensor libraries less autonomous

since they depend on other SMS services to provide essential functionalities and runtime

environment.

5. SMS Design has Services that are Stateful

Under current SMS Web service interface design, when a client system sends a

request to receive sensor track messages from SMS, it needs to register with SMS first by

calling the RegisterData Web service method. The RegisterData method defines the

message format and message filter for the subscribed sensor track messages. Once the

RegisterData Web service method has been successfully called, SMS creates a session

for the requesting client system. The session retains the message filter and message

format information specified by the client system in the RegisterData Web service call.

Once the client system successfully establishes a session with SMS, it’s ready to call the

GetMessage Web service method to receive sensor track messages. When the

GetMessage method is called by the client system, SMS creates and maintains a sensor

message queue for the requesting client system, and populates the message queue with

messages defined by the message filter and message format specified in the RegisterData

Web service call.

As described above, SMS has to maintain session information between Web

service calls. This approach makes SMS service design stateful. The successful execution

of GetMessage depends on the session information (message format and filter) created by

 44

the RegisterData method. Services should be independent, self-contained requests, which

do not require information or state from one request to another when implemented.

Services should not be dependent on the context or state of other services. When

dependencies are required, they are best defined in terms of common business processes,

functions, and data models, not implementation artifacts (like a session key). Sometimes

service requesters require persistent state between service invocations, but this should be

separate from the service provider.

6. SMS Architecture is Deficient in Building Loosely Coupled Services

a. Sensor Systems and SMS

 As discussed earlier, SMS sensor libraries are software components

(Microsoft Dynamic Link Libraries) implemented using the .NET framework. When

integrating a new sensor system into SMS, a developer has to develop a sensor software

library for that sensor system based on the communications interface and the messaging

format for the sensor system.

 This level of dependence is a form of tight-coupling. If the

communications interface of the sensor system changes, then the implementation of the

corresponding SMS sensor library will have to change accordingly. The main problem is

that the communication between a sensor system and SMS is based on that sensor’s

communication interface instead of an open, standardized interface such as Web services.

b. Stateful Transaction

 As discussed earlier, SMS has Web service methods that are stateful. The

RegisterData method creates a session for the calling client system, and the GetMessage

method depends on the session variables created by the RegisterData method for its

successful execution. This approach makes the GetMessage method tightly coupled with

the RegisterData method.

 45

c. Sensor Libraries and SMS Infrastructure Components

 Since sensor libraries depend on SMS infrastructure components to

provide services such as runtime governess (load and run), establishing network

connection to sensor systems, and pushing processed sensor messages to the

AggregateSensorTrackQueue, sensor libraries and SMS infrastructure components are

tightly coupled.

7. SMS Architecture is Deficient in Building Reusable Services

As argued earlier, since the SensorRemoteObj module is not decomposed properly

based on separation of concerns, its reusability is very limited.

For example, authenticating client systems is an inherent part of the programming

logic that SensorRemoteObj implements; there does not exist a separate module that

handles client authentication. SensorRemoteObj was not specifically designed to carry

out client authentication. It performs many other tasks such as receiving sensor track

messages and providing the infrastructure for sensor libraries to load and run. Reusable

components should have very high degree of cohesion; it should do one thing and one

thing only. SensorRemoteObj clearly violates that design principle.

SMS should not embed authentication logic in its application code. This approach

does not scale well. If JPSC2 needs to access other services in SMS that require

authentication, then these services will have to replicate the authentication code currently

implemented in SensorRemoteObj.

Client authentication and sensor management are two separate logical entities that

have their own distinct services to fulfill. Sensor management provides the services to

manage sensors, and user authentication provides the service to authenticate client

systems. By making SensorRemoteObj implementing client authentication logic instead

of delegating it to a highly cohesive authentication service, SensorRemoteObj becomes

tightly coupled with the client authentication process which lowers the potential for

reusability.

 46

8. SMS Architecture is Deficient in Building Composable Services

Again, service composability is not possible if services are not designed to be

loosely coupled, reusable, and modular based on separation of concerns. As argued

earlier, the SensorRemoteObj module within SMS is deficient in loose-coupling,

reusability, and modularity, thus SMS is deficient in service composability as well.

For example, the SensorRemoteObj module performs four major tasks:

- Registering Clients

- Authentication Clients

- Retrieving Sensor Track Messages from AggregateSensorTrackQueue

- Sending Sensor Commands to Sensors via SMS sensor libraries

All of the above tasks are lumped together into one single service. Since each task

in the above list is an independent and separate logical entity, SensorRemoteObj should

be decomposed into at least those four separate services. Then those services can be

composed to fulfill different business requirements. For example, the service that

retrieves sensor track messages and the client authentication service can be composed to

form a Sensor Data Service to service client requests on sensor track messages.

9. SMS Design does not Support Service Discovery

Under current SMS architecture, there is no mechanism to advertise and discover

services. A service registry or directory for storing and managing service descriptions

does not exist.

V. ALTERNATIVE DESIGN BASED ON SOA

In this chapter, we will present some alternative design approaches that will

increase the degree of service-orientation for SMS.

Figure 12 shows the high level design of our proposed architecture. Under this

new architecture, the SensorRemoteObj component in SMS is decomposed into more

granular services (Sensor Data Web Service, Sensor Control Web Service, and Sensor

Data Publisher Web Service) to increase the system’s overall modularity; a User

Authentication Service is added to make the overall system design based on a better

scheme of separation of concerns; a Database Management System is also added to

reduce the burden of managing stateful information; new web services at each sensor

system (Sensor Control Receiver Web Service and Sensor Data Provider Web Service)

and SMS (Sensor Data Publisher Web Service) are established to make system

integration more loosely coupled; and finally a UDDI registry is added to make all the

system’s available Web services discoverable.

Figure 12: Proposed SMS Architecture

The rest of this chapter will explain in detail how the new designs improve the

existing system’s service-orientation.

 47

 48

1. Implementing SMS Web Services as Autonomous and Independent
Services

As elaborated in the last chapter, Web services are implemented as component

wrappers in SMS. All SMS Web services delegate their service implementation logic to a

.NET component named SensorRemoteObj. This approach makes services less

autonomous, less modular, and less reusable. It also makes service logics tightly coupled.

To improve the design, we first need to build SMS Web services as autonomous

and independent services, not as service wrappers around a single component. This

means we need to remove SensorRemoteObj from SMS and implement the actual service

logics in the Web services themselves.

By doing this, not only we are implementing SMS Web services as real services,

but we are also decomposing service logics that used to be aggregated in one single

component into a set of services based on separation of concerns. SensorDataWS and

SensorControlWS are modules that are designed to perform distinct operations based on

separation of concerns (registration, receiving message, send command, etc.). By

removing SensorRemoteObj from SMS and decompose its service logics to form

autonomous services, the entire system becomes more modular.

2. Building Sensor Libraries as Autonomous Services

As mentioned in the last chapter, sensor libraries in SMS are .NET components

(Dynamic Link Library files) that depend on SMS’s infrastructure services to load and

execute. Their design follows the traditional component architecture. They are not written

as autonomous and independent services loosely coupled from SMS and they cannot be

composed to form larger services to provide a variety of sensor track messages.

In addition, under the current architecture, when SMS integrates a new sensor, the

corresponding SMS sensor library has to know the sensor system’s specific

communication protocol, messaging format, and remote interface in order to establish

communication with the sensor system and convert sensor specific message format to

SMS message format. This approach makes SMS tightly coupled with the sensor

systems. Every time a sensor system changes its communications interface, the

 49

corresponding SMS sensor library has to be changed. In other words, the sensor system’s

communication interface dictates the implementation of SMS and its corresponding

sensor libraries.

We propose an alternative system architecture to integrate sensor systems with

SMS. First, we develop a new Web service interface for SMS. We call this Web service

SensorDataPublisherWS. The SensorDataPublisherWS service provides an interface for

other client sensor systems to publish sensor data to SMS. Below is a service description

on SensorDataPublisherWS: (The Appendix shows a detailed description (WSDL) of the

Web service methods for the Sensor Data Publisher Web Service Interface.)

String PublishSensorData(String clientName,

 String sensorMessages)

The PublishSensorData Web service method is called by the client sensor system

to push sensor data into SMS.

The clientName parameter is the name of the client sensor system. Before a client

sensor system can publish its tracks to SMS, its name has to be stored in SMS’s client

sensor data store. The sensorMessages parameter contains an array of sensor messages in

SMS message format (Figure 10) that will be published to SMS.

Next, we develop an integration service for each sensor system that wants to

provide track data to SMS. We shall call this service the SensorDataProviderWS service

and it performs the following tasks:

1. Establish communication with the sensor system based on the sensor system’s

communication interface.

2. Convert the sensor system’s unique proprietary message format into SMS track

message format.

3. Call the PublishSensorData method in SensorDataPublisherWS to publish the

converted sensor track messages to SMS.

The SensorDataProviderWS service defined for each sensor system together with

the SensorDataPublisherWS defined in SMS, implement the message processing

functionalities. In other words, the SensorDataProviderWS shifts the responsibility of

receiving and processing sensor track data from SMS to individual sensor systems.

 50

Finally, we develop a Web service interface for each sensor system that receives

sensor control commands from SMS. We shall call this service the

SensorControlReceiverWS service:

1. When SMS receives a control command from JPSC2 via its SensorControlWS

Web service, it forwards that command to the appropriate sensor system by

calling that sensor system’s SensorControlReceiverWS service.

2. Upon receiving the sensor control command, the SensorControlReceiverWS

service converts the command message from the generic SMS message format to

the sensor system’s unique proprietary message format.

3. After the command message has been converted, the SensorControlReceiverWS

service establishes communication with the sensor system and sends the

command to the sensor system via the sensor’s communications interface.

The SensorControlReceiverWS basically shifts the responsibility of processing

sensor control commands from SMS to individual sensor systems.

So the question is why are we doing this? As we have discussed in earlier

sections, one of the fundamental characteristics of SOA-based service "modules" is that

they are constructed with loosely-coupled interfaces to allow for business process

flexibility and use in multiple business processes. When properly designed, loosely

coupled services support a composition model, allowing individual services to participate

in aggregate assemblies. This introduces continual opportunities for reuse and

extensibility.

Under the proposed architecture, the SensorDataProviderWS service and the

SensorControlReceiverWS services make each sensor system an autonomous,

independent, and composable service. Since each sensor system becomes a service, a

variety of sensor systems can be composed to provide a variety of sensor track data.

Secondly, the SensorDataPublisherWS Web service provides an interface for any

third party sensor systems to integrate with SMS via an open, standardized interface—

irrespective of the technology used to implement the underlying logic. The standardized

 51

interface supports the open communications framework that sits at the core of SOA. The

use of Web services establishes a framework under which building loosely coupled

software services is greatly simplified.

Thirdly, the proposed architecture makes sensor system’s communication

protocol loosely coupled from SMS’s internal implementation. The change of individual

sensor system’s implementation and communication interface would not affect the

implementation of SMS. SMS does not care what the sensor system’s communication

interface is or what message format it uses because it is the responsibility of the sensor

system’s Web services (SensorDataProviderWS and SensorControlReceiverWS) to

publish sensor tracks and process sensor control commands using SMS’s communication

protocol (Web services) and messaging format.

3. Implementing Client Authentication as a Separate Service

Under current SMS architecture, client authentication code is embedded inside of

SMS’s application code. User authentication and sensor management are two separate

logical entities that have their own distinct services to fulfill. Sensor management

provides the services to manage sensors, and user authentication provides the service to

authenticate client systems. The client authentication mechanism should be implemented

as an autonomous and independent software module separated from sensor management

application logics. This approach would improve the modularity, autonomy, and

reusability of both modules.

There are many ways to implement the authentication service; we will discuss two

possible methods:

1) Create a UserAuthentication Web service that has the following method:

String UserAuthenticate(String username)

The username parameter provided by the method will be checked against a

database that stores all SMS client authentication credentials. The method will return

SUCCESSFUL if authentication is passed, otherwise it will return FAILED. All

authentication code is contained within this service. Under this scheme, there is no

mixing of sensor management logic and user authentication logic. Service requestors of

this service simply compose this service to authenticate their clients.

 52

2) Another approach, which is a better approach, is to use a Web service

container that provides not only user authentication but also wire-level security. The

Internet Information Service (IIS), Microsoft’s Web server, can provide both.

This obvious benefit of this approach is that authentication mechanism is

implemented by the Web server container, rather than the application. It is the IIS rather

than the application that becomes the security provider.

This approach improves modularity since the service can focus on application

logic instead of implementing programming logic on security. It also leverages the

reusability of the Web server container. A Web server such as IIS can host a variety of

applications regardless of their application domains. The security features it provides can

be reused by many services and applications.

4. Removing Registration from Web Service Interface

The SMS Web service interface can be changed to minimize state information

management. As explained in the last chapter, a client system calls the RegisterData

method to define what type of messages it wants to receive. When this method is called,

state information such as message type and message filter is maintained as session

variables by SMS. Those session variables are used by the GetMessage method to

retrieve messages.

To eliminate state information, The RegisterData method should be eliminated.

Instead, the GetMessage Web service method provides the interface to allow client

systems to define what type of messages to subscribe. This approach would eliminate the

need to maintain state information in SMS. Below contrasts the current GetMessage

signature to the proposed signature:

Current signature of RegisterData() and GetMessage():

String RegisterData(String clientName,

 String format,

 String filterType,

 String filterString)

String GetMessage(String clientName)

Proposed signature of GetMessage:

 53

String GetMessage(String clientName,

 String filterType,

 String filterString)

 When the client system calls the new GetMessage method, GetMessage just

retrieves the messages from the data store based on the definition of the message filter

defined in the call. If the client system chooses to subscribe to a different set of messages,

all it needs to do is to define a different set of message filter parameters to reflect the

change. No re-registration is required.

5. Adding DBMS to Minimize State Information

As explained in Chapter III, upon calling the GetMessage method, SMS creates

and maintains a sensor message queue for the requesting client system, and populates the

message queue with messages defined by the message filter and message format specified

by the client system. The client message queue does not get created unless GetMessage is

called by a requesting client, and there is a one-to-one relationship between the number

of client message queues and the number of clients. If SMS has n clients, there will be

potentially n client message queues to manage. Obviously, this approach does not scale

very efficiently. Client message queue created for each client is considered state

information that should be eliminated to promote service-orientation.

The proposed solution is to store sensor track messages in a DBMS instead of

storing them in message queues. We can build a Data Ingestion Service whose function is

to do the following:

1. retrieves messages from SMS’s AggregateTrackMessageQueue where all

sensor track messages are stored in SMS message format

2. correlates the retrieved sensor track messages

3. stores the correlated sensor track messages in a central DBMS

The SensorDataWS Web service interface remains the same. To client systems,

the internal change to SMS is transparent. When a client system calls the GetMessage

method in SensorDataWS, SMS goes to the DBMS to retrieve the requested messages

using standard SQL. Thus, instead of managing n message queues for n request client

systems, we now have a central repository that stores all tracks that are accessible

 54

through a standard interface. This approach significantly improves system scalability,

decouples client system call to SMS internal implementation, eliminates state information

to promote loose coupling.

6. Implementing UDDI to Make Web Service Discoverable

As we have established in earlier sections, the sole requirement for one service to

contact another is access to the other service’s description. Under the proposed

architecture for SMS, as the amount of Web services increase within and outside of

SMS/JPSC2 system boundary, mechanisms for advertising and discovering service

descriptions may become necessary. A central directory and registry such as UDDI

should be used to keep track of the many service descriptions that become available.

A UDDI registry can be used to:

 Locate the latest versions of known service descriptions

 Discover new Web services that meet certain criteria

For example, when a new SensorControlReceiverWS Web service with a method

to accept sensor control commands for a sensor system is developed, its service location

and description are advertised in a public UDDI registry. Then, SMS can access the

registry to locate the new Web service and calls it to forward sensor control command

triggered from JPSC2 to the sensor system.

Another example is that SMS advertises its SensorDataWS and

SensorDataPublisherWS Web services in a UDDI registry. Then any authorized third

party sensor systems can locate the SensorDataPublisherWS in the registry and publish

its tracks to SMS. SMS clients such as JPSC2 can locate SensorDataWS in the UDDI

registry, and call it to receive SMS managed tracks and display them on the C2 map

console.

The implementation of the UDDI registry makes reusable components more

readily available to service requestors. The whole process of locating and binding to

reusable services becomes very dynamic.

 55

VI. CONCLUSION AND FUTURE WORK

A. CONCLUSION

In this thesis, we presented a case study of a Sensor Management System to

investigate the degree of service-orientation of a SOA-based software systems and ways

to increase the degree of service-orientation of a software architecture. Through the

detailed case study, we tentatively answered the following questions:

1. Does a system’s use of Web services make its architecture service-oriented?

2. What determines whether a system is designed based on SOA?

3. What criteria can be used to evaluate a system’s degree of service-orientation?

The results of this study conclude that the use of Web services alone by a

software application does not automatically make it service-oriented. What makes an

application services-oriented depends on whether it is designed and implemented based

on the fundamental design principles of service-orientation. The nine fundamental design

principles of service-orientation specified in Chapter II: modularity, abstraction, loose

coupling, autonomy, sharing of a contract, composability, statelessness, reusability, and

discoverability can be used as design criteria to evaluate a software system’s degree of

service-orientation.

B. FUTURE WORK

1. Web Service Performance

The alternative architecture we proposed in this thesis depends solely on the use

of Web services to integrate JPSC2, SMS, and the various sensor systems. Because Web

services introduce layers of data processing, it is subject to the associated performance

overhead imposed by these layers. For example, Web services security measures, such as

encryption and digital signing, add new layers of processing to both the senders and

recipients of messages.

Thus, it is critical to understand the performance requirements of the system and

the performance limitations of the system infrastructure to build a successful solution.

 56

The following tests and analysis should be conducted to evaluate how the use of Web

services impact data processing performance on SMS/JPSC2:

 Testing the message processing capabilities of the system environments prior to

implementing Web services

 Stress-testing the vendor supplied processors (for XML, XSLT, SOAP, etc.) intended

for use

Normally, data processed by a typical Command and Control (C2) system are

near real-time. Surveillance systems such as JPSC2 may have higher real time

requirements since it deals with live data (live video feeds and detection) and the

response time required by the operators is much faster. If the site where the system is

deployed has a limited network bandwidth, then the use of web services may not meet the

performance requirements, and we may need to sacrifice the degree of service-orientation

for better performance by going with a more component based approach such as .NET

Remoting [25].

However, there are some achievements in recent years to increase the data

processing speed of Web services. For example, intelligent XML parser technology such

as the XML-binary Optimized Packaging (XOP) [26] and SOAP Message Transmission

Optimization Mechanism (MTOM) [27] and the advent of XML appliances such as IBM

DataPower® greatly enhance Web services data processing performance [28]. Web

services caching support in some application servers also improve performance

significantly [29]. More studies need to be conducted to explore alternative processors,

accelerators, or other types of supporting technology to improve data processing

performance.

2. Web Service Security

Since Web services expose the system’s external interface on the Wide Area

Network (WAN), network security becomes an important issue and needs to be addressed

accordingly.

 57

a. Beware of Remote Third-party Services

When a remote third party sensor system on a WAN is being integrated to

SMS, it calls the SensorDataPublisherWS service in SMS to publish its data; WS-

Security should be implemented and incorporated into SMS to ensure that third party

systems do not compromise the security of the overall system. One way to mitigate this

risk is to test the third-party system with a prototype that simulates the anticipated

interaction scenarios before going live.

b. Define an Appropriate System for Single Sign-on

Under our proposed architecture, when JPSC2 issues a sensor control

command, it calls the SensorControlWS service in SMS, and SMS in turn calls the

SensorControlReceiverWS service at the corresponding sensor system to execute the

command. A security model should be designed with single sign-on in mind to establish

an efficient integration model. Security credentials transmitted by the SensorControlWS

service should be mapped to the SensorControlReceiverWS service so that the

authentication process is streamlined and administration is relatively centralized.

c. Consider the Development of Security Policies

Since we are dealing with diverse systems that have clearly defined Web

services interfaces, it might be a good idea to implement Extensible Access Control

Markup Language (XACML) [30] or WS-Policy to provide a means of defining policies

that determine what the service requestor can and cannot do with the requested service

provider operation. A single policy can apply to a variety of applications and services.

For example, we can design a policy to require all service requestors to

SMS Web services to digitally sign and encrypt their messages.

One challenge when using policies is the enforcement of policy rules. We

need to ensure that a given Web service is actually checking a policy prior to allowing a

service requestor access to a resource. One approach is to centralize security into a

separate services layer.

 58

THIS PAGE INTENTIONALLY LEFT BLANK

 59

APPENDIX: SERVICE DESCRIPTIONS (WSDL)

A. SENSORDATAWS

<?xml version="1.0" encoding="utf-8"?>
<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:tns="http://Spawar.navy.mil/Code2644/WebServices/"
xmlns:s="http://www.w3.org/2001/XMLSchema"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
targetNamespace="http://Spawar.navy.mil/Code2644/WebServices/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <wsdl:types>
 <s:schema elementFormDefault="qualified"
targetNamespace="http://Spawar.navy.mil/Code2644/WebServices/">
 <s:element name="RegisterData">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="clientName" type="s:string"
/>
 <s:element minOccurs="0" maxOccurs="1" name="format" type="s:string" />
 <s:element minOccurs="0" maxOccurs="1" name="filterType" type="s:string" />
 <s:element minOccurs="0" maxOccurs="1" name="filterString" type="s:string"
/>
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="RegisterDataResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="RegisterDataResult"
type="s:string" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="UnregisterData">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="clientName" type="s:string"
/>

 60

 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="UnregisterDataResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="UnregisterDataResult"
type="s:string" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="GetSensorList">
 <s:complexType />
 </s:element>
 <s:element name="GetSensorListResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="GetSensorListResult"
type="s:string" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="GetClientList">
 <s:complexType />
 </s:element>
 <s:element name="GetClientListResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="GetClientListResult"
type="s:string" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="GetMessage">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="client" type="s:string" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="GetMessageResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="GetMessageResult"
type="s:string" />

 61

 </s:sequence>
 </s:complexType>
 </s:element>
 </s:schema>
 </wsdl:types>
 <wsdl:message name="RegisterDataSoapIn">
 <wsdl:part name="parameters" element="tns:RegisterData" />
 </wsdl:message>
 <wsdl:message name="RegisterDataSoapOut">
 <wsdl:part name="parameters" element="tns:RegisterDataResponse" />
 </wsdl:message>
 <wsdl:message name="UnregisterDataSoapIn">
 <wsdl:part name="parameters" element="tns:UnregisterData" />
 </wsdl:message>
 <wsdl:message name="UnregisterDataSoapOut">
 <wsdl:part name="parameters" element="tns:UnregisterDataResponse" />
 </wsdl:message>
 <wsdl:message name="GetSensorListSoapIn">
 <wsdl:part name="parameters" element="tns:GetSensorList" />
 </wsdl:message>
 <wsdl:message name="GetSensorListSoapOut">
 <wsdl:part name="parameters" element="tns:GetSensorListResponse" />
 </wsdl:message>
 <wsdl:message name="GetClientListSoapIn">
 <wsdl:part name="parameters" element="tns:GetClientList" />
 </wsdl:message>
 <wsdl:message name="GetClientListSoapOut">
 <wsdl:part name="parameters" element="tns:GetClientListResponse" />
 </wsdl:message>
 <wsdl:message name="GetMessageSoapIn">
 <wsdl:part name="parameters" element="tns:GetMessage" />
 </wsdl:message>
 <wsdl:message name="GetMessageSoapOut">
 <wsdl:part name="parameters" element="tns:GetMessageResponse" />
 </wsdl:message>
 <wsdl:portType name="SensorDataWSSoap">
 <wsdl:operation name="RegisterData">
 <wsdl:input message="tns:RegisterDataSoapIn" />
 <wsdl:output message="tns:RegisterDataSoapOut" />
 </wsdl:operation>
 <wsdl:operation name="UnregisterData">
 <wsdl:input message="tns:UnregisterDataSoapIn" />
 <wsdl:output message="tns:UnregisterDataSoapOut" />
 </wsdl:operation>
 <wsdl:operation name="GetSensorList">

 62

 <wsdl:input message="tns:GetSensorListSoapIn" />
 <wsdl:output message="tns:GetSensorListSoapOut" />
 </wsdl:operation>
 <wsdl:operation name="GetClientList">
 <wsdl:input message="tns:GetClientListSoapIn" />
 <wsdl:output message="tns:GetClientListSoapOut" />
 </wsdl:operation>
 <wsdl:operation name="GetMessage">
 <wsdl:input message="tns:GetMessageSoapIn" />
 <wsdl:output message="tns:GetMessageSoapOut" />
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="SensorDataWSSoap" type="tns:SensorDataWSSoap">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" />
 <wsdl:operation name="RegisterData">
 <soap:operation
soapAction="http://Spawar.navy.mil/Code2644/WebServices/RegisterData"
style="document" />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="UnregisterData">
 <soap:operation
soapAction="http://Spawar.navy.mil/Code2644/WebServices/UnregisterData"
style="document" />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="GetSensorList">
 <soap:operation
soapAction="http://Spawar.navy.mil/Code2644/WebServices/GetSensorList"
style="document" />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />

 63

 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="GetClientList">
 <soap:operation
soapAction="http://Spawar.navy.mil/Code2644/WebServices/GetClientList"
style="document" />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="GetMessage">
 <soap:operation
soapAction="http://Spawar.navy.mil/Code2644/WebServices/GetMessage"
style="document" />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:binding name="SensorDataWSSoap12" type="tns:SensorDataWSSoap">
 <soap12:binding transport="http://schemas.xmlsoap.org/soap/http" />
 <wsdl:operation name="RegisterData">
 <soap12:operation
soapAction="http://Spawar.navy.mil/Code2644/WebServices/RegisterData"
style="document" />
 <wsdl:input>
 <soap12:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap12:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="UnregisterData">
 <soap12:operation
soapAction="http://Spawar.navy.mil/Code2644/WebServices/UnregisterData"
style="document" />
 <wsdl:input>
 <soap12:body use="literal" />
 </wsdl:input>

 64

 <wsdl:output>
 <soap12:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="GetSensorList">
 <soap12:operation
soapAction="http://Spawar.navy.mil/Code2644/WebServices/GetSensorList"
style="document" />
 <wsdl:input>
 <soap12:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap12:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="GetClientList">
 <soap12:operation
soapAction="http://Spawar.navy.mil/Code2644/WebServices/GetClientList"
style="document" />
 <wsdl:input>
 <soap12:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap12:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="GetMessage">
 <soap12:operation
soapAction="http://Spawar.navy.mil/Code2644/WebServices/GetMessage"
style="document" />
 <wsdl:input>
 <soap12:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap12:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="SensorDataWS">
 <wsdl:port name="SensorDataWSSoap" binding="tns:SensorDataWSSoap">
 <soap:address
location="http://localhost/SPAWARWebServices/SensorDataWS/SensorDataWS.asmx"
/>
 </wsdl:port>
 <wsdl:port name="SensorDataWSSoap12" binding="tns:SensorDataWSSoap12">

 65

 <soap12:address
location="http://localhost/SPAWARWebServices/SensorDataWS/SensorDataWS.asmx"
/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

B. SENSORCONTROLWS

<?xml version="1.0" encoding="utf-8"?>
<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:tns="http://Spawar.navy.mil/Code2644/WebServices/"
xmlns:s="http://www.w3.org/2001/XMLSchema"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
targetNamespace="http://Spawar.navy.mil/Code2644/WebServices/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <wsdl:types>
 <s:schema elementFormDefault="qualified"
targetNamespace="http://Spawar.navy.mil/Code2644/WebServices/">
 <s:element name="RegisterControl">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="clientName" type="s:string"
/>
 <s:element minOccurs="0" maxOccurs="1" name="sensorSite" type="s:string" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="RegisterControlResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="RegisterControlResult"
type="s:string" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="UnregisterControl">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="clientName" type="s:string"
/>

 66

 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="UnregisterControlResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="UnregisterControlResult"
type="s:string" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="GetSensorInfo">
 <s:complexType />
 </s:element>
 <s:element name="GetSensorInfoResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="GetSensorInfoResult"
type="s:string" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="GetSensorInfoByName">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="sensorSite" type="s:string" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="GetSensorInfoByNameResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1"
name="GetSensorInfoByNameResult" type="s:string" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="GetSensorList">
 <s:complexType />
 </s:element>
 <s:element name="GetSensorListResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="GetSensorListResult"
type="s:string" />

 67

 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="SendCommand">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="clientName" type="s:string"
/>
 <s:element minOccurs="0" maxOccurs="1" name="sensorSite" type="s:string" />
 <s:element minOccurs="0" maxOccurs="1" name="command" type="s:string" />
 <s:element minOccurs="0" maxOccurs="1" name="args"
type="tns:ArrayOfAnyType" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:complexType name="ArrayOfAnyType">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="unbounded" name="anyType"
nillable="true" />
 </s:sequence>
 </s:complexType>
 <s:element name="SendCommandResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="SendCommandResult"
type="s:string" />
 </s:sequence>
 </s:complexType>
 </s:element>
 </s:schema>
 </wsdl:types>
 <wsdl:message name="RegisterControlSoapIn">
 <wsdl:part name="parameters" element="tns:RegisterControl" />
 </wsdl:message>
 <wsdl:message name="RegisterControlSoapOut">
 <wsdl:part name="parameters" element="tns:RegisterControlResponse" />
 </wsdl:message>
 <wsdl:message name="UnregisterControlSoapIn">
 <wsdl:part name="parameters" element="tns:UnregisterControl" />
 </wsdl:message>
 <wsdl:message name="UnregisterControlSoapOut">
 <wsdl:part name="parameters" element="tns:UnregisterControlResponse" />
 </wsdl:message>
 <wsdl:message name="GetSensorInfoSoapIn">
 <wsdl:part name="parameters" element="tns:GetSensorInfo" />

 68

 </wsdl:message>
 <wsdl:message name="GetSensorInfoSoapOut">
 <wsdl:part name="parameters" element="tns:GetSensorInfoResponse" />
 </wsdl:message>
 <wsdl:message name="GetSensorInfoByNameSoapIn">
 <wsdl:part name="parameters" element="tns:GetSensorInfoByName" />
 </wsdl:message>
 <wsdl:message name="GetSensorInfoByNameSoapOut">
 <wsdl:part name="parameters" element="tns:GetSensorInfoByNameResponse" />
 </wsdl:message>
 <wsdl:message name="GetSensorListSoapIn">
 <wsdl:part name="parameters" element="tns:GetSensorList" />
 </wsdl:message>
 <wsdl:message name="GetSensorListSoapOut">
 <wsdl:part name="parameters" element="tns:GetSensorListResponse" />
 </wsdl:message>
 <wsdl:message name="SendCommandSoapIn">
 <wsdl:part name="parameters" element="tns:SendCommand" />
 </wsdl:message>
 <wsdl:message name="SendCommandSoapOut">
 <wsdl:part name="parameters" element="tns:SendCommandResponse" />
 </wsdl:message>
 <wsdl:portType name="SensorControlWSSoap">
 <wsdl:operation name="RegisterControl">
 <wsdl:input message="tns:RegisterControlSoapIn" />
 <wsdl:output message="tns:RegisterControlSoapOut" />
 </wsdl:operation>
 <wsdl:operation name="UnregisterControl">
 <wsdl:input message="tns:UnregisterControlSoapIn" />
 <wsdl:output message="tns:UnregisterControlSoapOut" />
 </wsdl:operation>
 <wsdl:operation name="GetSensorInfo">
 <wsdl:input message="tns:GetSensorInfoSoapIn" />
 <wsdl:output message="tns:GetSensorInfoSoapOut" />
 </wsdl:operation>
 <wsdl:operation name="GetSensorInfoByName">
 <wsdl:input message="tns:GetSensorInfoByNameSoapIn" />
 <wsdl:output message="tns:GetSensorInfoByNameSoapOut" />
 </wsdl:operation>
 <wsdl:operation name="GetSensorList">
 <wsdl:input message="tns:GetSensorListSoapIn" />
 <wsdl:output message="tns:GetSensorListSoapOut" />
 </wsdl:operation>
 <wsdl:operation name="SendCommand">
 <wsdl:input message="tns:SendCommandSoapIn" />

 69

 <wsdl:output message="tns:SendCommandSoapOut" />
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="SensorControlWSSoap" type="tns:SensorControlWSSoap">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" />
 <wsdl:operation name="RegisterControl">
 <soap:operation
soapAction="http://Spawar.navy.mil/Code2644/WebServices/RegisterControl"
style="document" />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="UnregisterControl">
 <soap:operation
soapAction="http://Spawar.navy.mil/Code2644/WebServices/UnregisterControl"
style="document" />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="GetSensorInfo">
 <soap:operation
soapAction="http://Spawar.navy.mil/Code2644/WebServices/GetSensorInfo"
style="document" />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="GetSensorInfoByName">
 <soap:operation
soapAction="http://Spawar.navy.mil/Code2644/WebServices/GetSensorInfoByName"
style="document" />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>

 70

 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="GetSensorList">
 <soap:operation
soapAction="http://Spawar.navy.mil/Code2644/WebServices/GetSensorList"
style="document" />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="SendCommand">
 <soap:operation
soapAction="http://Spawar.navy.mil/Code2644/WebServices/SendCommand"
style="document" />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:binding name="SensorControlWSSoap12" type="tns:SensorControlWSSoap">
 <soap12:binding transport="http://schemas.xmlsoap.org/soap/http" />
 <wsdl:operation name="RegisterControl">
 <soap12:operation
soapAction="http://Spawar.navy.mil/Code2644/WebServices/RegisterControl"
style="document" />
 <wsdl:input>
 <soap12:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap12:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="UnregisterControl">
 <soap12:operation
soapAction="http://Spawar.navy.mil/Code2644/WebServices/UnregisterControl"
style="document" />
 <wsdl:input>

 71

 <soap12:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap12:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="GetSensorInfo">
 <soap12:operation
soapAction="http://Spawar.navy.mil/Code2644/WebServices/GetSensorInfo"
style="document" />
 <wsdl:input>
 <soap12:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap12:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="GetSensorInfoByName">
 <soap12:operation
soapAction="http://Spawar.navy.mil/Code2644/WebServices/GetSensorInfoByName"
style="document" />
 <wsdl:input>
 <soap12:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap12:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="GetSensorList">
 <soap12:operation
soapAction="http://Spawar.navy.mil/Code2644/WebServices/GetSensorList"
style="document" />
 <wsdl:input>
 <soap12:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap12:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="SendCommand">
 <soap12:operation
soapAction="http://Spawar.navy.mil/Code2644/WebServices/SendCommand"
style="document" />
 <wsdl:input>
 <soap12:body use="literal" />

 72

 </wsdl:input>
 <wsdl:output>
 <soap12:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="SensorControlWS">
 <wsdl:port name="SensorControlWSSoap" binding="tns:SensorControlWSSoap">
 <soap:address
location="http://localhost/SPAWARWebServices/SensorControlWS/SensorControlWS.a
smx" />
 </wsdl:port>
 <wsdl:port name="SensorControlWSSoap12"
binding="tns:SensorControlWSSoap12">
 <soap12:address
location="http://localhost/SPAWARWebServices/SensorControlWS/SensorControlWS.a
smx" />
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

C. SENSORDATAPUBLISHERWS

<?xml version="1.0" encoding="utf-8"?>
<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:tns="http://Spawar.navy.mil/Code2644/WebServices/"
xmlns:s="http://www.w3.org/2001/XMLSchema"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
targetNamespace="http://Spawar.navy.mil/Code2644/WebServices/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <wsdl:types>
 <s:schema elementFormDefault="qualified"
targetNamespace="http://Spawar.navy.mil/Code2644/WebServices/">
 <s:element name="PublishSensorData">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="clientName" type="s:string"
/>
 <s:element minOccurs="0" maxOccurs="1" name="sensorMessages"
type="s:string" />
 </s:sequence>

 73

 </s:complexType>
 </s:element>
 <s:element name="PublishSensorDataResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="PublishSensorDataResult"
type="s:string" />
 </s:sequence>
 </s:complexType>
 </s:element>
 </s:schema>
 </wsdl:types>
 <wsdl:message name="PublishSensorDataSoapIn">
 <wsdl:part name="parameters" element="tns:PublishSensorData" />
 </wsdl:message>
 <wsdl:message name="PublishSensorDataSoapOut">
 <wsdl:part name="parameters" element="tns:PublishSensorDataResponse" />
 </wsdl:message>
 <wsdl:portType name="SensorDataPublisherWSSoap">
 <wsdl:operation name="PublishSensorData">
 <wsdl:input message="tns:PublishSensorDataSoapIn" />
 <wsdl:output message="tns:PublishSensorDataSoapOut" />
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="SensorDataPublisherWSSoap"
type="tns:SensorDataPublisherWSSoap">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" />
 <wsdl:operation name="RegisterForPublishingSensorData">
 <soap:operation
soapAction="http://Spawar.navy.mil/Code2644/WebServices/RegisterForPublishingSens
orData" style="document" />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="PublishSensorData">
 <soap:operation
soapAction="http://Spawar.navy.mil/Code2644/WebServices/PublishSensorData"
style="document" />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>

 74

 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:binding name="SensorDataPublisherWSSoap12"
type="tns:SensorDataPublisherWSSoap">
 <soap12:binding transport="http://schemas.xmlsoap.org/soap/http" />
 <wsdl:operation name="RegisterForPublishingSensorData">
 <soap12:operation
soapAction="http://Spawar.navy.mil/Code2644/WebServices/RegisterForPublishingSens
orData" style="document" />
 <wsdl:input>
 <soap12:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap12:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="PublishSensorData">
 <soap12:operation
soapAction="http://Spawar.navy.mil/Code2644/WebServices/PublishSensorData"
style="document" />
 <wsdl:input>
 <soap12:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap12:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="SensorDataPublisherWS">
 <wsdl:port name="SensorDataPublisherWSSoap"
binding="tns:SensorDataPublisherWSSoap">
 <soap:address
location="http://localhost/SPAWARWebServices/SensorDataPublisherWS/SensorDataP
ublisherWS.asmx" />
 </wsdl:port>
 <wsdl:port name="SensorDataPublisherWSSoap12"
binding="tns:SensorDataPublisherWSSoap12">
 <soap12:address
location="http://localhost/SPAWARWebServices/SensorDataPublisherWS/SensorDataP
ublisherWS.asmx" />
 </wsdl:port>
 </wsdl:service>

 75

</wsdl:definitions>

 76

LIST OF REFERENCES

[1] USN Program Executive Office for Command, Control, Communications,
 Computers and Intelligence (PEO C4I), “Net-Centric Implementation Framework,
 Part 1: Overview, Version 2.1.0,” 12 October 2007.

[2] Erl, Thomas, Service-Oriented Architecture: Concepts, Technology, and Design,

Prentice Hall, Boston, MA 02116 2005.

[3] Thesis, “Service oriented architecture for coast guard command and control” by

Russell E. Dash and Robert H. Creigh, March 2007.

[4] O’Brien, Liam, Len Bass, and Paulo Merson. “Quality Attributes and Service-

Oriented Architectures.” Software Engineering Institute Technical Note.
 CMU/SEI-2005-TN-014. Sep. 2005.
 URL: http://www.sei.cmu.edu/publications/documents/05.reports/05tn014.html

[5] NESI Part 1, v1.3, 16 June 2006.

[6] OASIS: Advanced Open Standards for the Information Society. UDDI Version

 2.04 API Specification UDDI Committee Specification. 2002.
 URL: http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.pdf

[7] W3CSchools.com. XML Tutorial. URL:
 http://www.w3schools.com/xml/default.asp

[8] W3C. Web Services Description Language (WSDL). 2001. URL:

 http://www.w3.org/TR/wsdl

[9] W3Schools.com. SOAP Tutorial. URL:
 http://www.w3schools.com/soap/default.asp

[10] OASIS: Advanced Open Standards for the Information Society. Web
 Services Coordination (WS-Coordination) Version 1.2. 2009. URL:
 http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-os/wstx-wscoor-
 1.2-spec-os.html

[11] W3C. Web Services Addressing (WS-Addressing). 2004. URL:

 http://www.w3.org/Submission/ws-addressing/

[12] IBM. Web Services Notification (WS-Notification)

 2004. URL: http://www.ibm.com/developerworks/library/ws-resource/ws-
 notification.pdf

http://www.sei.cmu.edu/publications/documents/05.reports/05tn014.html
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.pdf
http://www.w3schools.com/soap/default.asp
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-os/wstx-wscoor-1.2-spec-os.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-os/wstx-wscoor-1.2-spec-os.html
http://www.ibm.com/developerworks/library/ws-resource/ws-

 77

[13] W3C. Web Services Eventing (WS-Eventing). 2006. URL:
 http://www.w3.org/Submission/WS-Eventing/

[14] The Internet Engineering Task Force (IETF). Hypertext Transfer Protocol –

 HTTP/1.1. 1999. URL: http://www.ietf.org/rfc/rfc2616.txt

[15] The Internet Engineering Task Force (IETF). Simple Mail Transfer Protocol.

 1982. URL: http://tools.ietf.org/html/rfc821

[16] The Internet Engineering Task Force (IETF). Transfer Control Protocol (FTP).

 1985. URL: http://tools.ietf.org/html/rfc959

[17] OASIS: Advanced Open Standards for the Information Society. Web Services

 Security: SOAP Message Security 1.0 (WS-Security) 2004. URL:
 http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-
 1.0.pdf

[18] xmlsoap.org. Web Services Security Policy Language (WS-SecurityPolicy). 2005.

 URL: http://specs.xmlsoap.org/ws/2005/07/securitypolicy/ws-securitypolicy.pdf

[19] xmlsoap.org. Web Services Secure Conversation Language (WS-

 SecureConversation). 2005. URL:
 http://specs.xmlsoap.org/ws/2005/02/sc/WS-SecureConversation.pdf

[20] xmlsoap.org. Web Services Trust Language (WS Trust). 2005. URL:

 http://specs.xmlsoap.org/ws/2005/02/trust/WS-Trust.pdf

[21] IBM. Web Service Federation Language. 2003. URL:

 http://www.ibm.com/developerworks/library/specification/ws-fed/

[22] Online Community of the Security Assertion Markup Language (SAML) OASIS

 Standard. SAML Specification. 2008. URL: http://saml.xml.org/saml-
 specifications

[23] IBM. Web Service Manageability. 2003. URL:

 http://www.ibm.com/developerworks/library/specification/ws-manage/

[24] Object Management Group. Documents Associated with Business Process Model

 and Notation (BPMN) 1.2. Jan. 2009. URL: http://www.omg.org/spec/BPMN/1.2/

[25] .NET Framework Developer Center. .NET Remoting Overview. 2003. URL:

 http://msdn.microsoft.com/en-us/library/kwdt6w2k(VS.71).aspx

[26] W3C. XML-binary Optimized Packaging. Jan. 2005. URL:

 http://www.w3.org/TR/xop10/

http://www.w3.org/Submission/WS-Eventing/
http://msdn.microsoft.com/en-us/library/kwdt6w2k(VS.71).aspx

 78

[27] W3C. SOAP Message Transmission Optimization Mechanism. Jan. 2005. URL:
 http://www.w3.org/TR/soap12-mtom/

[28] IBM. WebSphere DataPower SOA Appliances. 2009. URL:

 http://www-01.ibm.com/software/integration/datapower/

[29] IBM. WebSphere Application Server. 2009. URL:

 http://www-01.ibm.com/software/webservers/appserv/was/

[30] OASIS: Advanced Open Standards for the Information Society. eXtensible Access

 Control Markup Language (XACML) TC. 2008. URL:
 http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml

[31] OASIS: Web Services Reliable Messaging (WS-ReliableMessaging) . 2009. URL:
 http://docs.oasis-open.org/ws-rx/wsrm/200702

http://www-01.ibm.com/software/integration/datapower/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml

 79

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. SPAWAR 05
Space and Naval Warfare Systems Center
San Diego, CA

4. Program Executive Officer Command, Control, Communications, Computers, and
 Intelligence

Space and Naval Warfare Systems Center
San Diego, CA

5. Man-Tak Shing
Naval Postgraduate School
Monterey, CA

6. James Bret Michael
Naval Postgraduate School
Monterey, CA

	I. INTRODUCTION
	A. MOTIVATION
	B. PURPOSE
	C. ORGANIZATION

	II. BACKGROUND
	A. SERVICE-ORIENTED ARCHITECTURE
	1. Fundamental Service-oriented Design Principles
	2. Pitfalls of SOA Design

	B. WEB SERVICES TECHNOLOGY AND STANDARDS
	1. Web Services Standards
	a. Extensible Markup Language (XML)
	b. Simple Object Access Protocol (SOAP)
	c. Web Service Description Language (WSDL)
	d. Universal Description Discovery and Integration (UDDI)

	2. Web Service Stack
	a. Process Layer
	b. Description Layer
	c. Messages Layer
	d. Communications Layer
	e. Security
	f. Management

	3. Relationship between SOA and Web Services

	C. CASE STUDY: SMS/JPSC2
	1. System Overview
	2. JPSC2
	3. Sensor Management System
	4. System Architecture

	III. CURRENT DESGIN OF SMS
	A. INTERFACE TO SENSOR SYSTEMS
	B. INTERFACE TO EXTERNAL C2
	1. Sensor Data Interface
	2. Sensor Control Interface

	IV. SOA ANALYSIS OF SMS
	1. SMS Architecture Shares a Formal Contract
	2. SMS Architecture is Designed to Abstract Underlying Logic
	3. SMS Architecture is Deficient in Building Modular Services
	4. SMS Architecture is Deficient in Building Autonomous Services
	a. SMS Web Services are not Autonomous
	b. SMS Sensor Libraries are not Autonomous
	5. SMS Design has Services that are Stateful
	6. SMS Architecture is Deficient in Building Loosely Coupled Services
	a. Sensor Systems and SMS
	b. Stateful Transaction
	c. Sensor Libraries and SMS Infrastructure Components

	7. SMS Architecture is Deficient in Building Reusable Services
	8. SMS Architecture is Deficient in Building Composable Services
	9. SMS Design does not Support Service Discovery

	V. ALTERNATIVE DESIGN BASED ON SOA
	1. Implementing SMS Web Services as Autonomous and Independent Services
	2. Building Sensor Libraries as Autonomous Services
	3. Implementing Client Authentication as a Separate Service
	4. Removing Registration from Web Service Interface
	5. Adding DBMS to Minimize State Information
	6. Implementing UDDI to Make Web Service Discoverable

	VI. CONCLUSION AND FUTURE WORK
	A. CONCLUSION
	B. FUTURE WORK
	1. Web Service Performance
	2. Web Service Security
	a. Beware of Remote Third-party Services
	b. Define an Appropriate System for Single Sign-on
	c. Consider the Development of Security Policies

	APPENDIX: SERVICE DESCRIPTIONS (WSDL)
	A. SENSORDATAWS
	B. SENSORCONTROLWS
	C. SENSORDATAPUBLISHERWS

	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

